
JOURNAL OF COMPUTATIONAL PHYSICS 24, 245-273 (1977) 

Numerical Solutions for Viscous and Potential Flow about Arbitrary 

Two-Dimensional Bodies Using Body-Fitted Coordinate Systems* 

FRANK C. THAMES,+ JOE F. THOMPSON,* C. WAYNE MASTIN,’ AND RAY L. WALKER” 

Department of Aerophysics and Aerospace Engineering, and Department of Mathematics, 
Mississippi State University, Mississippi State, Mississippi 39762 

Received March 19, 1976; revised August 12, 1976 

A procedure for numerical solution of the time-dependent, incompressible Navier- 
Stokes equations for the flow about arbitrarily shaped two-dimensional bodies is given. 
This solution is based on a technique of automatic numerical generation of a curvilinear 
coordinate system having a coordinate line coincident with the body contour regardless of 
its shape. The implicit solution utilizes the vorticity-stream function formulation with a 
false-position iterative adjustment of the surface vorticity in satisfaction of the no-slip 
boundary condition. All field equations are approximated using central differences and are 
solved simultaneously at each time step by SOR iteration. Excellent agreement with the 
Blasius boundary layer solution is obtained for a semi-in&rite flat plate. Results are pre- 
sented for Reynolds numbers up to 2000 for several airfoils and a cambered rock. A potential 
flow solution based on the same coordinate systems is also given, and excellent agreement 
with analytic solutions for Karman-Trefftz airfoils is shown. 

1. INTRODUCTION 

It is imperative in numerical solution of the Navier-Stokes equations that the 
boundary conditions be represented accurately in the finite-difference formulation, 
for the region in the immediate vicinity of solid surfaces is generally dominant in 
determining the character of the flow. The pressure and forces on solid bodies are 
directly dependent on the large gradients that prevail in this region near the surface, 
and accurate pressure and force coefficients require that these large gradients be 
represented accurately. This problem is accentuated at higher Reynolds numbers 
as the gradients become more severe. 

Therefore, almost all numerical solutions of the Navier-Stokes equations generated 
to date have treated bodies for which a natural coordinate system is available, circles, 
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ellipses, spheres, Joukowski airfoils, and so forth. (Natural coordinate systems as 
defined here are those for which the body contour under consideration coincides with 
a constant coordinate line.) Mehta and Lavan [I] have given a solution about a 
modified Joukowski airfoil accomplished by generating a coordinate system with a 
conformal Joukowski transformation and solving the Navier-Stokes equations on the 
system. The basic Joukowksi transformation was modified somewhat by rounding 
the trailing edge and contracting the coordinates near the body. The method is 
limited to those bodies which can be generated by the Joukowski transformation 
(symmetric and cambered Joukowski airfoils, flat plates, and circular and elliptic 
cylinders, etc.). 

Arbitrary two-dimensional bodies have not been successfully attacked as yet, 
primarily because of the difficulty of accurate representation of the boundary con- 
ditions and the large gradients near solid surfaces when no coordinate line is coincident 
with the body contour. Some solutions have been attempted with interpolation 
between grid points for boundaries not coincident with coordinate lines, but this 
necessarily introduces irregularity into an otherwise smooth boundary and places 
the most inaccurate difference representation in precisely the region of greatest 
sensitivity. Dawson and Marcus [2] attempted to create a method for general bodies 
by the use of two uniform rectangular grids: a fine inner grid surrounding the body and 
extending for perhaps one characteristic body dimension, and a coarse outer grid 
surrounding the inner grid and extending outward for perhaps 10 to 12 body diameters. 
The two grids overlap to allow for accurate transition between the two mesh systems. 
Only a circular cylinder solution was attempted, and this solution was restricted to 
small Reynolds numbers (R < 1000) because of boundary instabilities. 

Recently, Meyder [3] presented a solution for the flow in a rod bundle using 
orthogonal curvilinear coordinates generated by solving for the potential and “force” 
lines in a simply-connected region and taking these as the coordinate lines. The 
solution for the curvilinear coordinates was done, however, on a rectangular grid 
using interpolation. Finally, Gal-Chen and Somerville [4, 51 have given a generalized 
formulation of the Navier-Stokes equations for a nonorthogonal coordinate system 
and developed a numerical solution for the flow in a simply-connected region having 
an irregular boundary, with application to the flow over mountainous terrain. 

Numerical incompressible potential flow solutions for bodies of arbitrary shape 
have generally fallen into three categories. 

(1) Integral equation methods, whereby various singular solutions of Laplace’s 
equation are superposed to construct a solution satisfying the boundary conditions 
of the particular problem of interest. This type of aproach is represented by the work 
in Refs. [6-121. In these methods singular solutions of Laplace’s equation are distri- 
buted on the body surface, and perhaps also in its interior, with the body surface 
represented by quadralateral or triangular panels. The strengths of the singularities 
are then determined such that the superposition of the onset velocity field and that 
induced by the totality of the singularities satisfies the condition of vanishing normal 
velocity at the body surface at certain points. This approach has been carried to a high 
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degree of refinement and is presently capable of treating the flow about multiple 
bodies of arbitrary shape. This procedure obviates calculation in the entire flow field 
and involves instead the solution of a matrix equation of order equal to the number of 
points of application of the boundary condition on the bodies. The primary output is 
the surface pressure distribution on the bodies and the resulting aerodynamic 
coefficients. The velocity field can also be obtained, but this requires the evaluation 
of the velocity at each point in the field from a summation over all the singularities 
involved, a time consuming process. The determination of streamlines, or equivalently 
the stream function, from the velocity field is still another numerical problem itself. 

(2) Finite element methods, as represented by Refs. [13-151. Here the calcu- 
lation is carried out in the entire flow field, the field being divided into finite elements. 
The flow solution is obtained by applying an integral variational principle, or other 
integral relations, over the aggregate of elements, which leads to a matrix solution 
of order equal to the total number of elements in the field. The solution is thus obtained 
in the entire flow field. However, not all derivatives can be made continuous across 
the boundaries between the various elements. 

(3) Conformal transformation, whereby the field is transformed to one of simple 
geometry on which the solution is known (two-dimensional flow only). The classic 
Theodorsen method [16] is one of this type. A comparative discussion of earlier 
applications of this and other procedures is given in [6]. Recently Ives [17] has extended 
this approach to multiple bodies. 

Finite-difference solutions have been severly hindered in the past by the problem of 
fitting curved boundaries into the computational grid. The use of interpolation between 
grid points to represent boundary conditions on a curved boundary passing through a 
rectangular grid may lead to poor application of the boundary conditions. Since 
finite-difference solutions depend on continuity of derivatives, the distribution of 
points at will in the field leads to difference expressions involving large numbers of 
points, loss of repeat patterns over the field, and hence unreasonably complex 
computer codes. 

However, if a curvilinear coordinate system with coordinate lines coincident with 
the field boundaries can be found, these problems vanish, and the finite-difference 
approach can give very smooth solutions that do not lack continuity of derivatives. 
The flow solutions reported herein are based on just such an approach. 

The automatic numerical generation of a general curvilinear coordinate system 
with coordinate lines coincident with all boundaries of a general multiconnected 
region containing any number of arbitrarily shaped bodies should alleviate the 
problem of arbitrary bodies with these and other partial differential systems [18]. 
In this procedure, the curvilinear coordinates are generated as the solution of two 
elliptic partial differential equations with Dirichlet boundary conditions, one 
coordinate being specified to be constant on each of the boundaries, and a distribution 
of the other being specified along the boundaries. This general idea has been applied 
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previously to two-dimensional regions interior to a closed boundary (simply- 
connected regions) by Winslow [19], Barfield [20], Chu [21], Amsden and Hirt [22], 
and Godunov and Prokopov [23]. Winslow [19] and Chu [21] took the transformed 
coordinates to be solutions of Laplace’s equation in the physical plane which, as is 
shown in the next section, makes the physical Cartesian coordinates solutions of a 
quasi-linear elliptic system in the transformed plane. Barfield [20] and Amsden and 
Hirt [22] reversed the procedure, taking the physical coordinates to be solutions in 
the transformed plane of a linear elliptic system which consists of Laplace’s equation 
modified by a multiplicative constant on one term. This makes the transformed 
coordinates solutions of a quasi-linear elliptic system in the physical plane. Barfield 
also considered a hyperbolic system, but such a system cannot be used to treat general 
closed boundaries, since only elliptic systems allow specification of boundary 
conditions on the entirety of closed boundaries. Stadius [24] also used a hyperbolic 
system to generate a coordinate system for a doubly-connected region having parallel 
inner and outer boundaries. With parallel boundaries it is only necessary to specify 
conditions on one of the boundaries, the location of the other boundary being free. 
The elliptic system, however, allows all boundaries to be specified as desired and thus 
has much greater flexibility. 

Amsden and Hirt [22] constructed the coordinate generation method by iterative 
weighted averaging of the values of the physical coordinates at fixed points in the 
transformed plane in terms of values at nieghboring points. Although not stated as 
such, this procedure is precisely equivalent to solving Laplace’s equation, or modifi- 
cation thereof of the form noted above in Barfield [20], for the physical coordinates 
in the transformed plane by Gauss-Seidel iteration. Amsden and Hirt also allowed 
the boundary to move at each iteration, but this is simply equivalent to approaching 
the solution of the boundary-value problem through a succession of boundary-value 
problems converging to the problem of interest. In the approach of Godunov and 
Prokopov [23] the elliptic system is quasi-linear in both the physical and transformed 
planes. These authors applied a second transformation to that used by Chu [21], the 
transformation functions of this latter transformation being chosen a priori to control 
the coordinate spacing. Though not stated as such, the overall transformation may be 
shown to be generated by taking the transformed coordinates to be solutions in the 
physical plane of Laplace’s equation modified by the addition of a multiple of the 
square of the Jacobian, the multiplicative factors being a priori chosen functions of 
the physical coordinates. 

Meyder [3] generated an orthogonal curvilinear system by solving for the potential 
and “force” lines in a simply-connected region and taking these as the coordinate lines. 
This amounts to making the curvilinear coordinates solutions of Laplace equations 
in the physical plane with Dirichlet boundary conditions (constant) on part of the 
boundary and Neumann boundary conditions (vanishing normal derivative) on the 
remainder. The solution for the coordinates was done, however, in the physical plane 
on a rectangular grid using interpolation at the curved boundaries, rather than in the 
transformed plane. 

In the present research, the technique of generating the transformed coordinates as 
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solutions of an elliptic differential system in the physical plane has been applied to 
multiconnected regions with any number of arbitrarily shaped bodies (or holes). 
The elliptic equations for the coordinates are solved in finite-difference approximation 
by successive overrelaxation @OR) iteration. Coordinate lines may be concentrated 
as desired along the boundaries. Spacing of the coordinate lines encircling the body 
may be controlled by adjusting parameters in the partial differential equations for 
the coordinates. 

Regardless of the shape and number of the bodies and regardless of the spacing 
of the curvilinear coordinate lines, all numerical computations, both to generate the 
coordinate system and subsequently to solve partial differential equaitons on the 
coordinate system, are done on a rectangular grid with a square mesh, that is, in the 
transformed plane. It is also possible to cause the coordinate)system to change in time 
as desired and still have all computation done on a fixed rectangular grid with square 
mesh. This allows the curvilinear coordinate system in the physical plane to deform 
with a deforming body, blast front, shock, free surface, or any other boundary, 
keeping a coordinate line always coincident with the boundary at all times. The 
physical coordinate system has been in effect, eliminated from the problem, at the 
expense of adding two elliptic equations to the original system. 

Since the curvilinear coordinate system has coordinate lines coincident with the 
surface contours of all bodies present, all boundary conditions may be expressed 
at grid points. Also, normal derivatives on the bodies may be represented by using 
only finite differences between grid points on coordinate lines, without need of any 
interpolation, even though the coordinate system is not orthogonal at the boundary. 
Numerical solutions for the lifting and nonlifting potential flow about Karman-Trefftz 
airfoils obtained with this coordinate system generation show excellent comparison 
with the analytic solutions. 

This method of automatic body-fitted curvilinear coordinate generation has been 
used to construct a finite-difference solution of the full, incompressible, time-dependent 
Navier-Stokes equations for the laminar viscous flow about arbitrary two-dimensional 
airfoils or any other two-dimensional body [25]. The Navier-Stokes equations are 
written in the vorticity-stream function formulation, with the vorticity on the body 
being determined by a type of false-position iteration so that the no-slip boundary 
condition is satisfied. The solution is implicit in time, the vorticity and the stream 
function equations being solved simultaneously at each time step by SOR iteration. 
A method of controlling the spacing of the coordinate lines encircling the body has 
been developed in order to treat high Reynolds number flow, since the coordinate 
lines must concentrate near the surface to a greater degree as the Reynolds number 
increases. The solution is designed to provide the velocity field, the surface pressure 
distribution, and the lift, drag, and moment coefficients. Initial application to multiple 
airfoils has also been made [26]. Results are given for separated flow over several 
airfoils and an arbitrary rock. A comparison with the Blasius flat plate boundary 
layer solution is also given. 
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2. BODY-FITTED COORDINATE SYSTEMS 

A. Mathematical Development 

The basic approach of constructing body-fitted curvilinear coordinates in general 
multiconnected regions as the solution of an elliptic boundary-value problem has been 
covered by the authors in previous publications [18, 25,281. A detailed report of the 
technique, together with examples, the computer code, and a users’ manual, is now 
available [28]. The technique of application to the numerical solution of partial 
differential equations is also illustrated therein. 

Consider transforming the two-dimensional, doubly-connected region D, bounded 
by two, simple, closed, arbitrary contours, r, and r, , onto a rectangular region, D*, 
as illustrated in Fig. 1. We require that r, map onto I’r*, r, onto rz*, r, onto r3*, 
and r, onto r,*. Note that r,* and I’,* are required to be constant q-lines, while 
the arbitrary cut between contours I’, and r, (i.e., r, and r,) becomes constant 

Physical Plane 

Transformed Plane 

RG. 1. Field transformationSingle body. 
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&lines. The region D is the physical plane, D* the transformed plane, I’, the body 
contour, and r, the remote boundary contour. 

As discussed previously, the curvilinear coordinates are generated by solving an 
elliptic system of the form 

rm -t ‘5, = m 71, (14 

7mz + 7,, = as5 7), (lb) 

with Dirichlet boundary conditions, one coordinate being specified to be equal to a 
constant on the body and equal to another constant on the outer boundary, with the 
other coordinate varying monotonically over the same range around both the body 
and the outer boundary. (See [25,27], or [28] for more detail.) 

Since it is desired to perform all numerical computations in the uniform rectangular 
transformed plane, the dependent and independent variables must be interchanged in 
Eq. (1). This results in the coupled system (see [28] for the transformation relations) 

-EC - v3-% + ‘VXnn = --J%P(~, 7) + x,Q(& $1, (24 
OLYfC - 33YETI + YY,, = -J2[~8'(5> 7) + Y,Q(~> 711, CW 

where 

a = xn2 + Yn2, y = xc2 + YE23 

B = X6X, + YEYn 3 J = XEY, - X,YE > 

The system described by Eq. (2) is a quasi-linear elliptic system for the coordinate 
functions x(&7) and y&7) in the transformed plane. This set is considerably more 
complex than the linear system specified by Eq. (l), but the boundary conditions are 
specified on straight boundaries, and the coordinate spacing in the transformed plane 
is uniform. The inhomogeneous functions P(f, 7) and Q(c, 7) are sums of decaying 
exponentials [28] that allow coordinate lines to be attracted to specified lines and/or 
points in the field or on the boundaries as discussed in more detail in [28]. 

The method can also be applied to regions containing any number of arbitrary 
bodies and to regions with time-dependent boundaries. Discussions of these techniques 
are given in [26-281. 

B. Numerical Implementation 

The transformed field for a single airfoil is illustrated in Fig. 2. The physical 
coordinates of Z points describing the body surface, (x, y), provide the boundary 
conditions along the j = 1 line, and those of I points on the physical remote boundary, 
usually a circle of radius ten or more chords, supply the boundary conditions along the 
j = J line of the transformed field. Since the side boundaries of the transformed field 
are reentrant, corresponding to the cut in the physical plane, we have fi,j = fisj and 
f,+l,i = fisj for all j. Note that the values of x and y are not specified on these side 
boundaries. All derivatives in (2) are approximated by second-order central difference 
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j-1 
I I 

i=l i-1 
L 

FIG. 2. Computational grid. 

expressions (45 and dq are both unity by construction, the actual values of 6 and 11 
being immaterial since cancellation occurs after substitution in the transformed 
equations). 

Uih 2% HL+l,j -L-l.?), 

wii = HJ;.j+1 -LA 

(hf)ij 6% .h+l,i - 2hj +Ll,j 2 

Cf,n>ii =&+I - xi +.f;:.j-1 9 

The resulting set of 21(J - 1) nonlinear difference equations, two for each point (i,j) 
for i = 1, 2,..., I - 1 and J = 2, 3,..., J - 1, are solved by accelerated Gauss-Seidel 
(SOR) iteration using overrelaxation. The iteration is considered to have converged 
when the maximum absolute change on the field between iterates is less than a 
specified value. A range of acceleration parameters was examined, and a value of 1.85 
was nearly optimum for the airfoils considered. After convergence of the solution of 
(2), the values of the coefficients 01, /3, y, J, at each point of the field are stored for use 
in the solution of the partial differential equations. 

3. NAVIER-STOKES EQUATIONS 

A. Mathematical Formulation 

1. Basic equations. The stream function-vorticity formulation of the two- 
dimensional, incompressible viscous flow equations is given by 

where $ is the nondimensional stream function, w  the nondimensional vorticity, 
and R is the Reynolds number based on the characteristic velocity (freestream value) 
and body length. The set (3) is in the nonconservative formulation. Equations (3) 
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may be transformed utilizing the operations given in [28], yielding the set applicable 
in the rectangular transformed plane. The transformed equations are 

wt + (APE - +-4/J = (CWE - VW En + mAJ2R + hi&~, + P4IK (44 
(4~ - Y3k + rhNJ2 + Qb + W,. = -w, W 

with boundary conditions 

* = & = constant, y’l”+,,/J = 0, [L %I E r1*, (44 
* = v(5,r12) cos 8 - x(5,r12) sin 0, w = 0, Lf, %I E r2*, (W 

where 0 is the angle of attack. The second of (4~) guarantees that the no-slip condition 
is satisfied on the body surface. The satisfaction of this condition is accomplished by 
iteratively adjusting the value of the vorticity on the body surface, utilizing a false- 
position procedure, until the second-order forward difference approximation to the 
velocity component tangential to the body surface, F’zq = y’l”t,b,jJ, is below some 
tolerance. The iterative algorithm is given by 

(k) 
(k+l) 

wi.l 
(k) - s 

= WC.1 
wi.1 

- wp;l' 

(V )!k) - (J )(,k-1) 
(V )!k) T T J  a,1 

Tn a.1 zll 2.1 

where k denotes iteration count, 6 an adjustable parameter, and (i, 1) refers to some 
point on the body surface. This method is an extension of an approach suggested by 
Israeli [29]. 

2. Pressure coejicients. Pressure coefficients on the body surface are obtained by 
the line integral method as follows. If the primitive variable form of the Navier-Stokes 
equations is evaluated on the body surface, the velocity time derivative and the inertia 
terms vanish yielding 

VP = V2VIR (6) 

where the quantities are nondimensional in the usual fashion. Using a vector identity 
to eliminate the Laplacian of the velocity, dotting this equation with dr (an arc length 
differential along the body contour r,), and transforming produces 

dp = OIRJ)Gh - YW,) & (7) 

Integration along the transformed body contour, rl*, yields 

3. Force coejicients. If body forces are neglected, the force on a body immersed 
in a moving viscous fluid is determined by integrating the stress vector, T, over the 
body surface 

F = CAi + C,j = 1 T dS 
s 
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where S is the body surface. Substituting for T [30], and using the transformations 
given in [28], 

p cos 8 - xc sin 6) C,* dt - 2 if”‘“” ( yE sin 0 + s, cos @(w/R) dt, 
fmi, 

(94 

(xc cos 8 + yE sin 0) C,* d( + 2 j”“” (xe sin 6 - yc cos B)(w/R) d.$. 
Em in 

Pb) 

The two integrals in (9a) are referred to as the pressure and friction drag coefficients 
and are denoted CDp and CD,, respectively. 

B. Numerical Produres 

1. D@Eerence equations. The basic equations (4a), (4b) with boundary conditions 
(4c), (4d), and (5) were solved numerically with the fully implicit, backward-time, 
central-space formulation (BTCS). A two-point, first-order backward difference was 
used to approximate the time derivative, while second-order central differences were 
employed for the spatial derivatives. Point SOR iteration was employed to converge 
the elliptic space variation of Eqs. (4). The integration in Eqs. (8) and (9) was 
performed with the trapezoidal rule. Derivatives appearing in these relations were 
calculated using second-order forward (y-derivatives) or central (&derivatives) 
approximations. 

2. Convergence acceleration. Special procedures were used to evaluate the rela- 
xation factors for both the stream function and vorticity transport equations. If the 
cross derivative terms in (4a), (4b) are neglected (/3 is generally small), it is possible 
to calculate optimum SOR acceleration parameters at each point of the computational 
net [28]. Since the #-equation is linear, the optimum parameter is constant over the 
mesh and was found to be about 1.85. However, the vorticity equation is quasi-linear, 
and thus the optimum parameter should vary over the field. In particular since the 
IJ< and #,, derivatives are small near the body, Eq. (4a) assumes a Poisson character 
in this region. Poisson equations characteristically have optimum relaxation factors 
greater than unity. Conversely, as the radial distance from the body increases, the 
viscous diffusion terms become negligible and the convection terms dominate. 
Under these conditions a parameter less than unity is optimum for the w-equation. 
The above discussion indicates the feasibility of varying the vorticity equation 
acceleration parameter over the computational field. This approach was tried with 
some success with the Karman-Trefftz airfoils. For these bodies it was found that 
the optimum parameter varied linearly with 71 from a value of 1.4 immediately 
adjacent to the body to a value of 0.9 at the twentieth T-line. Parameters in the 
remainder of field were essentially constant with a value of 0.9 for the Reynolds 
numbers considered. 



FLOW SOLUTIONS FOR GENERAL BODIES 255 

3. Stability. Although the stability of the implicit BTCS method for linear 
parabolic equations is unlimited, this is not the case with nonlinear difference 
equations. However, such approaches do significantly broaden the available time step 
envelope. The solutions documented in the current paper utilized small time steps 
(d t = 0(2/R)) in the initial phases to damp the effects of the impulsive start. Time 
steps were subsequently increased to values of the order of 10/R to 20/R without 
significant increases in the number of iterations required to converge each step. 

4. Computer time. All solutions were run on the UNIVAC 1106 system. It is 
difficult, if not impossible, to draw any consistent and general conclusions regarding 
the computer time requirements of the viscous flow solutions. Problem variables 
having significant impact on computation time include angle of attack, Reynolds 
number, time step, computational method, convergence criteria, field size, and body 
geometry. As an indication of how difficult it is to develop a correlation of CPU 
requirements based on the above-stated variables, consider a comparison of the flapped 
Karman-Trefftz and Gdttingen 625 airfoil solutions. Although the Gijttingen 
solution was run at ten times the Reynolds number with a field size 12% larger, 
the time required to converge a comparable-sized time step was roughly one-half 
of that required for the flapped Karman-Trefftz airfoil. Convergence of this latter 
solution was slowed by difficulties with the boundary vorticity iteration near the 
airfoil trailing edge. However, on the average, the airfoil and rock solutions required 
approximately 4 min per time step for nominal field sizes of 4000. For the compu- 
tational methods used, improved CPU times would result primarily from an improved 
numerical algorithm for the body vorticity calculations. 

C. Results 

Viscous flows about a finite flat plate and five different bodies were calculated using 
the numerical procedures outlined above [25]. These bodies included a circular 
cylinder, cambered and flapped Karman-Trefftz airfoils, a Gottingen 625 airfoil, 
and the Cambered Rock. Reynolds numbers of the flows about the bodies ranged 
from 200 to 2000 at angles of attack from 0 to 15 degrees. The results of these numerical 
flow simulations are summarized below. 

1. Semi-infinite JEat plate solution. This numerical solution of the full Navier- 
Stokes equations was applied to the development of the flow over a semi-infinite flat 
plate [31] in order to test the use of the boundary-fitted coordinate systems for viscous 
flow solutions. All quantities are nondimensionalized with respect to the freestream 
velocity and unit length. The Reynolds number, R, is defined in terms of these reference 
values. The transformation from the physical to the transformed field is indicated 
schematically in Fig. 3. The coordinate system was generated as the solution of (2) 
with boundary conditions as follows: 

on a’b’ (plate surface): x = specified as desired, y = 0. 
on a’c’ (upper boundary): x = specified as desired, y = lo(~/R)~/~. 
on b’c’ (downstream boundary): x = constant, y = specified as desired. 
on a’a’ (leading edge): x = y = 0. 
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;::.-jj-l--; 
a x b 

Physical Field 

a’ 5 b’ 

Transformed Field 

FIG. 3. Relation between physical and transformed fields-Semi-infinite flat plate. 

The condition on y on the upper boundary, a’c’, places this boundary at twice 
the Blasius boundary layer thickness [32]. The downstream boundary was located 
at multiples of the distance at which the slope of the Blasius boundary layer is 0.01. 

The boundary conditions for the Navier-Stokes equations in the transformed plane 
are as follows: 

on a’b’ (plate surface): # = #,, = 0 (II = u = 0, no-slip condition). 

on a’c’ (upper boundary): & = (l/x&J + x,$3, w  = 0 (U = 1, w  = 0, 
freestream conditions). 

on b’c’ (downstream boundary): 

J/J = 2(t/R)l12 /w’2’t’Rr’12 erf 7 dv, 
0 

w = -(R/nt)li2 exp(-(Ry2/4t)) (infinite plate solution, Schlichting [32]) 

on a’a’ (leading edge): zj = w  = 0. 

The condition on the downstream boundary, b’c’, is the exact solution of the 
Navier-Stokes equations for a suddenly accelerated fully infinite flat plate. The 
numerical quadrature was done by trapezoidal integration. The condition on $,, 
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on the upper boundary expresses u = 1, the freestream velocity. All these boundary 
conditions were implemented directly except the $,, = 0 condition on the plate, a’b’, 
which was satisfied by adjusting the value of the vorticity at each point on the body 
by the false-position iteration procedure discussed above. 

The coordinate system used for the semi-infinite plate, shown in Fig. 4 has a 
curved boundary located at twice the Blasius boundary layer thickness above the plate, 
with coordinate lines coming to a point at the leading edge. This form was chosen in 
preference to systems with rectangular boundaries in order to concentrate the 
coordinate lines near the plate to a greater degree as the Reynolds number increases 
and also to ensure a test of a representative nonorthogonal curvilinear system. 

(a). Vertical Scale ExaSSerated for Plot 

(b). Actual System 

FIG. 4. Coordinate system-Semi-infinite flat plate. 

Velocity profiles obtained using this coordinate system are shown in Fig. 5 and 
compared therein with the Blasius boundary layer solution (Schlichting [32]). 
(Positions are given in fractions of the distance to the downstream boundary.) Since 
the downstream boundary condition was the time-dependent solution for the com- 
pletely infinite plate, for which the boundary layer thickness increases without bound 
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(a>. x = 0.001 

(cl. x = 0.50 

6). x - 0.01 

VELOCITY RRTIO 

Cd). x = 1.00 

FIG. 5. Semi-infinite flat plate solution. t = 1.24. (Downstream boundary at eight times the 
distance where Blasius boundary layer slope is 0.01, XMAX = 0.45312). 
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as time increases, the agreement with the Blasius solution deteriorates as expected 
as this boundary is approached (position 1.0 in these figures). The loss of flow in the 
lower portion of the boundary layer that results from this continual thickening of the 
boundary layer on the downstream boundary causes the overshoot of the Blasius 
protie that occurs upstream of this boundary. The agreement with the Blasius profile 
in regions farther removed from the downstream boundary is good. Note that the 
profiles upstream cling to the Blasius as the downstream profile moves away. 

Coordinate system control was used to cause the system to expand down the plate. 
The agreement with the Blasius solution extends very near the leading edge, since the 
coordinate lines are more closely spaced near the leading edge. With the Blasius 
boundary layer solution as the downstream boundary condition the problem becomes 
a steady-state problem, and the agreement with the boundary layer solution is 
excellent, except at the first few steps near the leading edge [31]. 

2. Giittingen 625 airfoil. The body-fitted coordinate system used in this solution 
is illustrated in Fig. 6. The flow Reynolds number was taken as 2000 at an angle of 
attack of 5 degrees. Stream function contours are illustrated shortly after the impulsive 
start in Fig. 7a. The starting vortex appears as the dip immediately above the trailing 
edge. Figure 7b also indicates that computational “wiggles” (Roache [33]) have 
developed in the solution near the airfoil trailing edge. The wiggles evolved due to 
the maintenance of zero vorticity at the airfoil trailing edge. This restriction was 
eventually removed and the wiggles died out. Laminar separation occurred on the 

FIG. 6. Coordinate system-Gi5ttingen 625 airfoil, attraction to body. 
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FIG. 8. Velocity profiles-Giittingen 625 airfoil; 0 = 5”, R = 2000, t = 1.83. 

trailing edge portion of the upper surface at a time of t = 0.658 (Fig. 7b). The 
separation point moved rapidly upstream to the half-chord location accompanied 
by an increase in the thickness of the separated region (Fig. 7~). The separated region 
is clearly indicated in the velocity profiles in Fig. 8. Sample pressure distributions 
at two times are shown in Fig. 9. The distributions and resulting force coefficients are 
characteristic of friction dominated flows (Fig. 9a) and pressure losses due to flow 
separation as evidenced by Fig. 9b. 

3. Cambered rock. To illustrate the ability of the body-fitted coordinate method 
to handle quite arbitrary geometries, the viscous flow about the cambered rock was 
developed at a Reynolds number of 500. The body-fitted coordinate system utilized 
for this solution is shown in Fig. 10. Vorticity and #-contours are given in Fig. 11, 
and velocity profiles are shown in Fig. 12. Although the accuracy of these calculations 
is not likely to be tested by experimental results, the flow produced by the numerical 
computations appears intuitively reasonable. In particular, the continued separation 
and reattachment which occurred in the concave regions of the body developed in a 
totally realistic and believable fashion. 
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FIG. 10. Coordinate system-Cambered rock, attraction to body. 

4. POTENTIAL FLOW SOLUTION 

A. Laplace Equation 

The two-dimensional irrotational flow about any number of bodies may be described 
by the Laplace equation for the stream function # 

with boundary conditions 

*m + *,?I = 0 (10) 

$(x, y) = constant on each body, 

#(x, y) = y cos e - x sin e at infinity, 

where 0 is the angle of attack of the free stream relative to the positive x-axis. Here the 
stream function is nondimensionalized relative to the airfoil chord and the freestream 
velocity. When transformed to the curvilinear coordinate system this equation becomes 

581/24/3-4 
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FIG. 11. I) and w contour-Cambered rock, t = 0.35. 

FIG. 12. Velocity profiles-Rock, R = 500, t = 1.2. 
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where 01, /3, y, and J are given above, and the transformed boundary conditions are, 
for a single body, 

ML 7)) = 160 on 77 = r), (i.e., on rr*), 02a) 

#(5? 7) = Y(5, rl2) cos 8 - ~(5, 7j2) sin 0 on 7j = 7~~ (i.e., on r,*). Pb) 

The uniqueness is implied by requiring that the solution be periodic in 
-~<t<c%771<11<112. (II, ,CI, y, and J are calculated during the generation 
of the coordinate system. Equation (11) is approximated using second-order, central 
differences for all derivatives, and the resulting difference equation is solved by 
accelerated Gauss-Seidel (SOR) iteration on the rectangular transformed field. 

The solution of (11) on the transformed field is constructed in the same manner 
that has been previously described for the solution of (2). The single equation (11) 
replaces the two equations (2a) and (2b), and the boundary conditions are given by 
(12). The total number of difference equations thus is Z(J - 1) for a single airfoil. 

B. Velocity 

The velocity components are calculated from the equations u = &, , ZI = --#*, 
which in the transformed plane become, 

Velocities in the interior of the field may be obtained from these relations using 
second-order central difference expressions for all derivatives as given above. 

On the body surface, I,$ = 0, so that these expressions reduce to u = x&,/J and 
v = y&,/J. Also, the unit tangent vector on the body surface is given by (see [28]) 

T = (lxt + jyJy”“. (14) 

Then the velocity component tangential to the surface is given by 

ut = v - T = (uxc + ~y~)/yl’~ = (y”“/J) IG, . (15) 

On the surface, the &derivatives are approximated by the second-order central differ- 
ence expressions given above, as in the interior of the field, at all points except those 
on the cut, i = 1 and i = Z, where second-order one-sided expressions are used. 
Thus 

U~)I,I = 4(-h + 4-L - 3AA (16a) 

m,1 = tcL2,1 - 4f,-,#I + 3f,,d WW 
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The v-derivatives on the surface are approximated at all points by second-order 
one-sided expressions. (First- and third-order expressions were also evaluated [34]) 

cni.1 = H-/is t 4&J - 3m. 07) 

C. Kutta Condition 

The value of the boundary value of # on the body, $,, , is determined by imposing 
the Kutta condition that the flow leave the sharp trailing edge of an airfoil smoothly. 
For a cusped trailing edge (zero included angle) this condition requires only that the 
velocity approach the same value at the trailing edge on the upper and lower surfaces 
of the airfoil. For a trailing edge with finite included angle it is required that the 
trailing edge be a stagnation point. It was found, however, that the requirement 
that the same limit be approached at the trailing edge on the upper and lower surfaces 
was superior numerically with both types of trailing edges [34]. This limit condition 
was also applied by Giesing [6] as the Kutta condition with a finite trailing edge in the 
potential flow solution using superposition of singularities. 

In the present solution the Kutta condition thus was applied by requiring that the 
value of the velocity component tangential to the body surface extrapolated quadra- 
tically at the trailing edge from neighboring points on the upper surface be equal to 
that extrapolated from neighboring points on the lower surface. Linear and cubic 
extrapolations were also evaluated [34], as well as the simple requirement that the 
velocity vanish at the trailing edge. This application of the Kutta condition is as 
follows. (Here superscript 0 refers to the trailing edge, and the other superscripts to 
successively distant neighboring points on the body surface as illustrated in Fig. 13. 
These points are, of course, equispaced in the transformed plane.) 

2v'l" - u(2+) = u;o' = 2v"-' _ y(2-). 
t t t t (18) 

3+ 

2+ 

If w 0 

2- 
I- 

FIG. 13. Extrapolation points for application of Kutta Condition. 

D. Superposition of Solutions 

Since the system to be solved is linear in #, the solution for a single airfoil at any 
angle of attack may be obtained by superposing three component solutions: (1) a 
solution at 0” angle of attack with no circulation, (2) a solution at 90” angle of attack 
with no circulation, and (3) a solution with circulation but zero freestream velocity 
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as done by Giesing [6]. These three component solutions, written x,P(& r)), i 
each satisfy Eq. (1 l), with the respective boundary conditions 

*1:; = 0, i = 1 ... I, 

*lt.i = Yi,J 9 i = 1 ... 1, 

*if; = 0, i = 1 ... 1, 

$!I?$ = -Xi.J, i = 1 “’ I, 

a)!“; = 1, i = 1 ... 1, 

I/$; = 0, i = 1 -a* 1. 

The complete solution with arbitrary circulation then is 

267 

1,293, 

(194 

Wb) 

(2W 

VW 

GW 

@lb) 

(22) 

The Kutta Condition is then satisfied by choosing the coefficient h such that (18) is 
satisfied, the tangential velocities being given by Eq. (15) with # from Eq. (22), 
using a one-sided difference expression analogous to Eq. (17) for the q-derivative. 

Thus it is only necessary to solve the system of difference equations three times for 
a given airfoil. The solution at any angle of attack may then be obtained without 
resolving the difference system. 

Airfoil I1 
Airfoil I2 

FIG. 14. Coordinate systems, Karman-Trefftz airfoils. 
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(a) Pressure Distribution 

(b) Streamlines 
FIG. 15. Comparison of numerical and analytical solutions-Flapped Karman-Trefftz airfoil. 

(Solid line is analytical; symbols are numerical.) 
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IO 

FIG. 16. Comparison of numerical and analytical solutions-Karman-Trefftz airfoil. (Solid line 
is analytical; symbols are numerical.) 
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E. Surface Pressure and Force CoeJkients 

The pressure coefficient at any point in the field may be obtained from the velocities 
via the Bernoulli equation, which in the present nondimensional variables is 

c, = 1 - 1 v 12. (23) 

On the body surface this becomes, from (15) 

c, = 1 - (r/J3 hl;I” (24) 

with the derivative evaluated by the difference expression (17). The nondimensional 
force on the body is given by (9) with zero W. 

FIO. 17. Coordinate system-Liebeck laminar airfoil. 
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The integrals can be evaluated by numerical quadrature using either the trapezoidal 
rule or Simpson’s rule, both of which were evaluated during the course of the investi- 
gation [34]. The former was found to be sufficient 

(25) 

F. Results 

An extensive study was made to determine the effects of the various parameters 
involved on the accuracy of the numerical solution [34]. Numerical results for the lift 
and drag coefficients, the surface pressure distribution, and the stream function 
contours for two Karman-Trefftz airfoils were compared with the analytic solutions 
[35] using several values for each of the parameters that must be chosen in the 
numerical solution. 

Coordinate systems for these two airfoils are given in Fig. 14 and typical com- 
parisons with the analytic solution are given in Figs. 15 and 16. A comparison of the 
potential flow solution with experimental results for a Liebeck laminar airfoil [36] 
is also given in Fig. 18, the coordinate system being given in Fig. 17. 

- NUMERICAL 

X/C - DIMENSIONLESS CHtlRO 

FIG. 18. Comparison of experimental and numerical potential flow results-Liebeck laminar 
airfoil. 
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5. CONCLUSIONS 

The use of body-fitted curvilinear coordinate systems allows numerical flow 
solutions for fields containing any number of bodies of arbitrary shape to be produced 
by finite-difference methods essentially as easily as that about single simple bodies. 
The computer code is not dependent on either the number or the shapes of the bodies, 
so that different bodies can be treated by simple changes in the input. 

The ability of the coordinate system method to compact the radial mesh spacing 
near the body allowed solutions to the viscous flow equations in which accurate 
pressure and force coefficients could be calculated. The approach of iterating for the 
boundary vorticity to explicitly enforce the no-slip condition, along with the inherent 
stability of implicit methods, permitted solutions at moderate Reynolds numbers. 
Minor improvements in the boundary vorticity iteration should result in accurate 
solutions up to the transition Reynolds number for a given flow. Recent progress 
has been made in this area. The body-fitted coordinates are currently being used to 
obtain solutions of turbulent flows, transonic flows, and flows with free surfaces. 
The procedure is also applicable to fields with more than one body, and viscous 
solutions for multiple airfoils are presently under development. 
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